Here’s the updated step-by-step approach for the Robotic Arm for Automated Material Handling using Favoriot IoT Platform and Telegram Integration with the correct Favoriot API implementation based on the documentation.
Step 1: Define System Architecture
The system consists of:
- Robotic Arm – Controlled by a PLC (Programmable Logic Controller) and Servo Motors.
- Sensors – IR sensors to detect object position and AI Vision for intelligent material handling.
- IoT Communication – Favoriot IoT platform to monitor and control remotely.
- Telegram Integration – Notify users about errors, task completion, and manual control.
Step 2: Hardware Components
- Robotic Arm Kit (6-DOF for better flexibility)
- PLC (e.g., Siemens S7-1200 or Arduino-based PLC)
- Motor Driver & Servo Motors (MG996R or DS3225)
- IR Sensors for object detection
- Camera for AI Vision (Optional, Raspberry Pi Camera or OpenMV)
- Microcontroller (ESP32/ESP8266) for IoT connectivity
- Power Supply (12V, 5A)
Step 3: Hardware Wiring
Basic Connections
- Servo motors connect to the PLC or ESP32 PWM pins.
- IR sensors connect to the microcontroller’s GPIO.
- AI Vision Camera connects to Raspberry Pi.
- ESP32 communicates with the Favoriot IoT platform via WiFi.
Step 4: Setting Up Favoriot IoT Platform
Step 4.1: Favoriot Account Setup
- Sign up/Login at Favoriot.
- Create a Device under “My Devices”.
- Note down Device Developer ID and API Key.
Step 5: Programming the Microcontroller (ESP32)
Install Required Libraries
In Arduino IDE, install:
WiFiClientSecureArduinoJsonServo.h
Step 5.1: ESP32 Code for Favoriot Data Upload
#include <WiFi.h>
#include <HTTPClient.h>
#include <ArduinoJson.h>
#include <Servo.h>
const char* ssid = "Your_SSID";
const char* password = "Your_WIFI_PASSWORD";
String favoriot_api = "YOUR_FAVORIOT_API_KEY";
String device_developer_id = "YOUR_DEVICE_DEVELOPER_ID";
String favoriot_url = "https://apiv2.favoriot.com/v2/streams";
Servo servo1, servo2, servo3; // Servo for robotic arm movement
int irSensor = 4; // IR sensor pin
void setup() {
Serial.begin(115200);
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(1000);
Serial.println("Connecting to WiFi...");
}
Serial.println("Connected to WiFi");
servo1.attach(5);
servo2.attach(18);
servo3.attach(19);
pinMode(irSensor, INPUT);
}
void sendToFavoriot(String status) {
if (WiFi.status() == WL_CONNECTED) {
HTTPClient http;
http.begin(favoriot_url);
http.addHeader("Content-Type", "application/json");
http.addHeader("Apikey", favoriot_api);
StaticJsonDocument<200> jsonDoc;
jsonDoc["device_developer_id"] = device_developer_id;
jsonDoc["data"]["status"] = status;
String jsonString;
serializeJson(jsonDoc, jsonString);
int httpResponseCode = http.POST(jsonString);
Serial.println("Data sent to Favoriot: " + status);
http.end();
}
}
void loop() {
if (digitalRead(irSensor) == HIGH) {
Serial.println("Object detected!");
sendToFavoriot("Object detected, moving robotic arm.");
servo1.write(90);
delay(1000);
servo2.write(45);
delay(1000);
servo3.write(90);
delay(1000);
sendToFavoriot("Task completed.");
}
delay(500);
}
Step 6: Telegram Bot Integration
Step 6.1: Create Telegram Bot
- Open Telegram and search for BotFather.
- Type
/newbotand follow the instructions. - Save the BOT TOKEN.
Step 6.2: ESP32 Code for Telegram Notifications
#include <WiFiClientSecure.h>
#include <UniversalTelegramBot.h>
#include <ArduinoJson.h>
const char* telegramBotToken = "YOUR_TELEGRAM_BOT_TOKEN";
const char* telegramChatID = "YOUR_TELEGRAM_CHAT_ID";
WiFiClientSecure client;
UniversalTelegramBot bot(telegramBotToken, client);
void sendTelegramMessage(String message) {
bot.sendMessage(telegramChatID, message, "");
}
void loop() {
int irValue = digitalRead(irSensor);
if (irValue == HIGH) {
sendTelegramMessage("Object detected! Robotic Arm is moving.");
}
delay(1000);
}
Step 7: AI Vision Integration (Optional)
If you want AI-based movement:
- Use OpenCV on Raspberry Pi to detect object position.
- Send coordinates to ESP32 via MQTT.
- Modify movement based on AI feedback.
Example Python code for object detection using OpenCV:
import cv2
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
cv2.imshow("Frame", thresh)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
Step 8: Testing & Deployment
- Power on the system.
- Check if ESP32 connects to WiFi.
- Confirm data is received in Favoriot IoT Dashboard.
- Verify Telegram messages.
- Optimize AI movement if applicable.
Conclusion
This project integrates Favoriot IoT, Telegram, and AI Vision into a Robotic Arm Automation System. The combination of sensors, AI, and remote monitoring provides efficient material handling in production lines.
Would you like an additional dashboard for real-time monitoring?
Reference
Disclaimer
This article provides a step-by-step guide. The source code may need adjustments to fit the final project design.
![[Tutorial] : Robotic Arm for Automated Material Handling using Favoriot IoT Platform and Telegram Integration](https://iotworld.co/wp-content/uploads/2025/03/DALL·E-2025-03-18-09.27.07-A-detailed-diagram-of-a-robotic-arm-automation-system-for-material-handling-in-a-factory.-The-system-includes-a-robotic-arm-with-six-degrees-of-freedo.webp)





Leave a Reply